// compile: make data
// run: ./data < data.in
#include <bits/stdc++.h>
using namespace std;
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
#ifdef LOCAL
#include <debug/codeforces.h>
#define debug(x...) _debug_print(#x, x);
#define Debug(x...) _debug_print_format(#x, x);
#else
#define debug(x...)
#define Debug(x...)
#endif
template<typename...Args> void print_(Args...args){((cout<<args<<" "),...)<<endl;}
#define rep(i,a,b) for(int i=(a);i<(int)(b);++i)
#define sz(v) ((int)(v).size())
#define print(...) print_(__VA_ARGS__);
#define FIND(a, x) ((find(a.begin(),a.end(),(x))!=a.end())?1:0)
#define cmin(x,...) x=min({(x), __VA_ARGS__})
#define cmax(x,...) x=max({(x), __VA_ARGS__})
#define INTMAX (int)(9223372036854775807)
#define INF (int)(1152921504606846976)
#define double long double
#define int long long
#define MAXN 200010
#define P 1000000007
struct graph {
struct node {
int v, w;
bool operator<(const node &other) const {
return w < other.w;
}
bool operator==(const node &other) const {
return v == other.v && w == other.w;
}
};
vector<vector<node>> e;
int n;
bool directed;
graph(int V, bool D = 0) {
n = V;
e.resize(n);
directed = D;
}
void add_edge(int u, int v, int w = 1) {
e[u].push_back(node{v, w});
}
void dijkstra(int s, vector<int> &dis, vector<int> &nmin, vector<int> &nmax, vector<int> &nsum) {
dis.resize(n, INF); nmin.resize(n, INF); nmax.resize(n, -INF); nsum.resize(n, 0);
vector<bool> vis(n, 0);
struct temp {
int d, u, num;
bool operator<(const temp &other) const {
return d < other.d;
}
bool operator>(const temp &other) const {
return d > other.d;
}
};
priority_queue<temp, vector<temp>, greater<temp>> pq;
dis[s] = 0, nsum[s] = 1, nmin[s] = nmax[s] = 0, pq.push({0, s, 0});
while (!pq.empty()) {
auto [d, u, num] = pq.top(); pq.pop();
if (vis[u]) continue;
vis[u] = 1;
for (auto [v, w]: e[u]) {
if (dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
nmin[v] = nmin[u] + 1;
nmax[v] = nmax[u] + 1;
nsum[v] = nsum[u];
pq.push({dis[v], v, num + 1});
}
else if (dis[v] == dis[u] + w) {
cmin(nmin[v], nmin[u] + 1);
cmax(nmax[v], nmax[u] + 1);
nsum[v] = (nsum[v] + nsum[u]) % P;
pq.push({dis[v], v, num + 1});
}
}
}
}
void graphviz_dump(string filename = "graph.dot") {
ofstream gf; gf.open(filename);
gf << (directed ? "digraph" : "graph") << " {\n";
gf << " "; rep(i, 0, n) gf << i << " ;"[i==n-1]; gf << endl;
string notation = directed ? " -> " : " -- ";
bool weighted = 0;
for (auto es: e) for (auto edge: es) if (edge.w != 1) weighted = 1;
rep(u, 0, n) {
for (auto [v, w]: e[u]) {
if (!directed && u > v) continue;
gf << " " << u << notation << v << (weighted ? " ;\n" : ";\n");
}
}
gf << "}\n";
}
};
int32_t main() {
ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
int n, m; cin >> n >> m;
graph g(n, 1);
rep(i, 0, m) {
int u, v, w; cin >> u >> v >> w;
g.add_edge(u-1, v-1, w);
}
g.graphviz_dump();
vector<int> dis, nmin, nmax, nsum;
g.dijkstra(0, dis, nmin, nmax, nsum);
cout << dis[n-1] << " " << nsum[n-1] << " " << nmin[n-1] << " " << nmax[n-1] << endl;
return 0;
}
No Comments